Imperial College London

Learning robust segmentations for cardiac MRI

Biomedical Image Analysis Group Department of Computing, Imperial College London, UK

Klinikum rechts der Isar Technische Universität München

Daniel Rueckert, FREng, FMedSci, FIEEE

Alexander von Humboldt Professor of AI for Medicine and Healthcare Faculty of Medicine and Informatics, TU Munich, Germany

and

No conflicts of interests

23,216 views | Apr 30, 2017, 12:10pm

AI In Medicine: Rise Of The Machines

Paul Hsieh Contributor () I cover health care and economics from a free-market perspective.

THE NEW YORKER

APRIL 3, 2017 ISSUE

A.I. VERSUS M.D.

What happens when diagnosis is automated?

By Siddhartha Mukherjee

AI/ML in Medicine

Deep learning for image segmentation

Bai et al., JCMR 2018

Deep learning for image segmentation

SA, basal

SA, mid-ventricular

LA, 2 chamber

SA, apical

LA, 4 chamber

Bai et al., JCMR 2018

Evaluation of segmentation accuracy Comparison to expert observers

W. Bai et al., JCMR 2018

MIT Technology Review

Artificial intelligence / Machine learning

Hundreds of Al tools have been built to catch covid. None of them helped.

Some have been used in hospitals, despite not being properly tested. But the pandemic could help make medical AI better.

by Will Douglas Heaven

July 30, 2021

Domain shift: Population bias

EBioMedicine 67 (2021) 103358

Contents lists available at ScienceDirect

EBioMedicine

journal homepage: www.elsevier.com/locate/ebiom

Review

Ensuring that biomedical AI benefits diverse populations

James Zou^a, Londa Schiebinger^{b,*}

^a Department of Biomedical Data Science, Stanford University, United States

^b History of Science, Stanford University, United States

RESEARCH ARTICLE

ECONOMICS

Dissecting racial bias in an algorithm used to manage the health of populations

Ziad Obermeyer^{1,2*}, Brian Powers³, Christine Vogeli⁴, Sendhil Mullainathan^{5*}†

Domain shift: Pathologies

Variation during training

Variation during deployment

Domain shift: Acquisition variations

Stress Rest Cine LGE

Domain shift: What is the problem?

Domain shift: Learning invariant features using adversarial learning

- Learn a domain classifier f_D

Domain shift: Learning invariant features using adversarial learning

Labelled data from scanner A

Scanner A/Scanner B

K. Kamnitsas et al. IPMI 2017, arXiv:1612.08894

Domain shift: Unsupervised multi-modal style transfer (Winner of the MS-CMR Segmentation Challenge)

- **1.** Learn an image style translator to translate labelled **bSSFP** images to be LGE-like images At training time, only unpaired bSSFP and LGE images are required.

2. Training a cascaded LGE image segmentation network with synthetic images

C. Chen et al., "Unsupervised multi-modal style transfer for cardiac MR segmentation," in STACOM'19

Enforce consistency for domain shift

 Produce consistent predictions on the input image and its augmented one with similar semantic attributes.

Data augmentation: Bias field

tissue, which can greatly affect segmentation accuracy

Bias field introduces intensity inhomogeneities in the same

Original image

Prediction

Image with bias field

Prediction

• We model the bias field using a set of control points c uniformly distributed across the image [1]:

$$\lambda = \lambda \mathbb{E}_{x \sim D_l \cup D_u} R(p, p')$$

Segmentation results

- A simple appearance-based data augmentation pipeline for single-source domain generalization
- Training on one single source domain, generalizable to multiple target domains.
- Synthesizing infinite novel domains (i.e. types of image appearances) using randomly-weighted shallow convolutional networks.
- Verified on cross-domain segmentations for cardiac, abdominal and prostate images.

networks.

Training image

1. Synthesizing infinite novel domains using randomly-weighted

networks.

1. Synthesizing infinite novel domains using randomly-weighted

new appearance

manner.

randomly-weighted shallow networks

Training image

Network weights re-sampled in

2. Blending network-augmented images in a spatially-variable

augmentations.

Novel-domain synthesizing using randomly-weighted shallow networks

Training image

Network weights re-sampled in

3. Enforcing consistency between predictions under different

for Medical Image Segmentation. CoRR abs/2111.12525 (2021)

Best of previous methods* ERM (baseline) Proposed

ERM

RSC

MixStyle

Cutout

- real-world data
 - Significant problem for AI models for image analysis
 - Also significant problem in the context of image reconstruction and enhancement
- Domain shift is caused by a variety of reasons
 - Scanner variabilities
 - Population variations and pathologies
- developing strategies that can deal with these variations
- Understanding causes of domain shift is important in Assessing performance during deployment is critical!

Domain shift can cause significant deterioration of AI models in

Acknowledgements

Lab for AI in Medicine @

Senior Researchers

Researchers

Jiazhen Pan

PhD Student

Medical Imaging Computing,

Semantic Segmentation, Flow

Estimation

Moritz Knolle

Researcher

Medical Image Computing,

Probabilistic Deep Learning,

Semantic Segmentation,

Martin Menten **Research Scientist**

Generative modelling, Unsupervised biomarker detection, Retinal imaging

Veronika Zimmer Research Scientist Medical Image Computing, Ultrasound Image Analysis, Fetal Image Analysis

Research Scientist Inverse Problems, Machine Learning, MRI, Medical Image

Computing

Georgios Kaissis Senior Research Scientist

Privacy-preserving artificial intelligence, Medical image computing, Probabilistic methods

PhD Student Artifical Intelligence in Medicine,

Privacy-preserving Machine

Researcher

Deep Learning, Medical Image

Computing

Machine Learning, Geometric

Dmitrii Usynin PhD Student Artifical Intelligence in Medicine,

Secure and Private Artificial

Intelligence

Felix Meissen

PhD Student

Anomaly Detection, Transfer

Learning, Generative Models,

Bayesian Learning

Leonhard Feiner PhD Student

Learning, Medical Image Computing, Data Science

Machine Learning and Deep

PhD Student

Artificial Intelligence in Medicine, Computational Neuroscience

Vasiliki Side Lampretsa

Philip Mueller

PhD Student

Multi-Modal Learning, Natural

Language Processing,

Geometric Deep Learning

Reihaneh

Torkzadehmahani

PhD student

Privacy-preserving Machine

Segmentation, Pancreatic Ductal Adenocarcinoma

Reza Nasirigerdeh

learning, Distributed systems, Medical imaging

PhD student

Privacy-preserving machine

PhD Student

Geometric Deep Learning, Artifical Intelligence in Medicine, Machine Learning and Deep Learning, Medical Imaging

Imperial College London BioNedA @

https://biomedia.doc.ic.ac.uk/

Engineering and Physical Sciences **Research Council**

biobank Improving the health of future generations

Alexander von Humboldt Stiftung/Foundation