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Deep learning for image segmentation

Bai et al., JCMR 2018



Deep learning for image segmentation 

SA, basal SA, mid-ventricular SA, apical

LA, 2 chamber LA, 4 chamber Bai et al., JCMR 2018



Evaluation of segmentation accuracy

Comparison to expert observers

ManualAutomated W. Bai et al., JCMR 2018
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Domain shift: Population bias



Domain shift: Pathologies

Variation during training Variation during deployment



Domain shift: Acquisition variations
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Domain shift: What is the problem?
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Domain shift: Learning invariant features 

using adversarial learning

• Learn a domain classifier 

• Minimize accuracy of domain-classifier      via back-prop

– Learn an adapted domain invariant classifier 



Domain shift: Learning invariant features 

using adversarial learning 

Labelled data 

from scanner A

Scanner A

Scanner A/Scanner B

Scanner B Discriminator

K. Kamnitsas et al. IPMI 2017,  arXiv:1612.08894



Domain shift: Unsupervised 

multi-modal style transfer

1. Learn an image style translator to translate labelled 

bSSFP images to be LGE-like images

At training time, only unpaired bSSFP and LGE images are 

required.
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2. Training a cascaded LGE image segmentation 
network with synthetic images

C. Chen et al., “Unsupervised multi-modal style transfer for cardiac MR segmentation ,”  in STACOM’19

(Winner of the MS-CMR Segmentation Challenge) 



Enforce consistency for domain shift

• Produce consistent predictions on the input image and its 

augmented one with similar semantic attributes.
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Data augmentation: Bias field

• Bias field introduces intensity inhomogeneities in the same 

tissue, which can greatly affect segmentation accuracy

Original image Image with bias field

Prediction Prediction

bias field



Data augmentation: Bias Field Generator 𝒢bias

• We model the bias field using a set of control points 𝒄
uniformly distributed across the image [1]:

𝑥 𝑥′

𝒢bias:
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C. Chen “Realistic Adversarial Data Augmentation for MR Image Segmentation,” in MICCAI 2020



Data augmentation: Bias Field Generator 𝒢bias
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C. Chen “Realistic Adversarial Data Augmentation for MR Image Segmentation,” in MICCAI 2020

𝒢bias:



Data Augmentation: Warping Generator 𝒢morph

𝑥

𝑥′ 𝑝′

𝑅[𝑝, 𝑝′]

consistency 

regularization

𝑝

𝑝′

𝑓𝑠𝑒𝑔(∙; 𝜽)

𝑥

𝑥′ = 𝑇(𝑥; 𝑡)

Adversarial deformation

Minimize   𝔼 𝑥,𝑦 ~ 𝐷𝑙
ℒS p, y + 𝜆𝔼𝑥~ 𝑫𝒍∪𝑫𝒖

𝑅 𝑝, 𝑝′

𝜽

Maximize  𝑅 𝑝, 𝑝′
v

𝒢morph:

v

C. Chen “Realistic Adversarial Data Augmentation for MR Image Segmentation,” in MICCAI 2020



Segmentation results

C. Chen “Realistic Adversarial Data Augmentation for MR Image Segmentation,” in MICCAI 2020



Data augmentation: 

Synthesize infinite novel domains 

• A simple appearance-based data augmentation pipeline for 

single-source domain generalization

• Training on one single source domain, generalizable to 

multiple target domains.

• Synthesizing infinite novel domains (i.e. types of image 

appearances) using randomly-weighted shallow convolutional 

networks.

• Verified on cross-domain segmentations for cardiac, 

abdominal and prostate images.



Data augmentation: 

Synthesize infinite novel domains 

1. Synthesizing infinite novel domains using randomly-weighted 

networks.

Training image

C. Ouyang et al.: Causality-inspired Single-source Domain Generalization 

for Medical Image Segmentation. CoRR abs/2111.12525 (2021)



Data augmentation: 

Synthesize infinite novel domains 

1. Synthesizing infinite novel domains using randomly-weighted 

networks.

Novel-domain synthesizing using 

randomly-weighted shallow 

networks
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~

Network weights re-sampled in 

each iteration
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new appearance

Training image

Gaussian distribution

C. Ouyang et al.: Causality-inspired Single-source Domain Generalization 

for Medical Image Segmentation. CoRR abs/2111.12525 (2021)



Data augmentation: 

Synthesize infinite novel domains 

2. Blending network-augmented images in a spatially-variable 

manner.
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C. Ouyang et al.: Causality-inspired Single-source Domain Generalization 

for Medical Image Segmentation. CoRR abs/2111.12525 (2021)



Data augmentation: 

Synthesize infinite novel domains 

3. Enforcing consistency between predictions under different 

augmentations.

Novel-domain synthesizing using 
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C. Ouyang et al.: Causality-inspired Single-source Domain Generalization 

for Medical Image Segmentation. CoRR abs/2111.12525 (2021)



Data augmentation: 

Synthesize infinite novel domains – Results
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C. Ouyang et al.: Causality-inspired Single-source Domain Generalization 

for Medical Image Segmentation. CoRR abs/2111.12525 (2021)



Data augmentation: 

Synthesize infinite novel domains – Results

ERM RSC MixStyle Cutout AdvBias RandConv Proposed Ground truth Source image
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C. Ouyang et al.: Causality-inspired Single-source Domain Generalization 

for Medical Image Segmentation. CoRR abs/2111.12525 (2021)



Summary and Conclusions

• Domain shift can cause significant deterioration of AI models in 

real-world data 
– Significant problem for AI models for image analysis

– Also significant problem in the context of image reconstruction and enhancement

• Domain shift is caused by a variety of reasons
– Scanner variabilities

– Population variations and pathologies

• Understanding causes of domain shift is important in 

developing strategies that can deal with these variations

• Assessing performance during deployment is critical!
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